Soccer team in a huddle

Maschinelles Lernen – bereit zum Abheben

Feature | 17. Januar 2018 von Katrin Schneider 0

Vor einem Jahr bezeichnete das Marktforschungs- und Beratungsunternehmen Gartner künstliche Intelligenz (Artificial Intelligence, AI), maschinelles Lernen (ML) und dialoggestützte Systeme (Conversational AI, CAI) als die drei wichtigsten strategischen Technologie-Trends des Jahres 2017. Im Mai dieses Jahres zeigte die SAP mit der Einführung des SAP Leonardo Machine Learning Portfolios auf der SAPPHIRE Now in Orlando, dass sie in der Liga der großen Innovatoren mitspielen kann. Nun ist es an der Zeit, auf die jüngsten Entwicklungen im Bereich dieser drei Trends zurückzublicken und einen Ausblick auf das Potenzial von intelligenten Technologien zu geben.

Trend 1: Plattformen für maschinelles Lernen

Deep Learning, neuronale Netze und die Verarbeitung natürlicher Sprache (Natural Language Processing, NLP) haben dem maschinellen Lernen einen neuen Stellenwert im Unternehmen gegeben. Dank ausgereifter Algorithmen, höherer Rechenleistung und der Verfügbarkeit von riesigen Datenmengen werden Maschinen intelligent und können unstrukturierte Daten wie Bilder, Text oder gesprochene Sprache verarbeiten – oft auf übermenschlichem Niveau. Hinzu kommt, dass Deep Learning inzwischen stabil genug ist, um maschinelles Lernen potenziell als standardisiertes Gebrauchsgut in der weltweiten Wirtschaft zu etablieren. Unternehmen, die maßgeschneiderte und individuell abgestimmte Lösungen wünschen, benötigen eine ML-Plattform wie die SAP Leonardo Machine Learning Foundation, um bereits vortrainierte und einsatzbereite Services in eigenen, intelligenten Anwendungen zu kombinieren.

Trend 2: Intelligente Anwendungen

Intelligente Anwendungen automatisieren Routinetätigkeiten, die Arbeitnehmer in der Vergangenheit darin behindert haben, ihre Zeit mit der Bewältigung von wertschöpfenden Aktivitäten zu verbringen, und können wertvolle Einblicke in strukturierte und unstrukturierte Unternehmensdaten geben. Dadurch können Unternehmen besser fundierte Geschäftsentscheidungen treffen und in Sparten wie Finanzen, Personalwesen, Verkauf und Service die Produktivität steigern. Unternehmen, in denen internes ML-Know-how fehlt, erleichtert die SAP die Adaption von ML-Funktionen durch Integration von intelligenten Anwendungen und Services in das bestehende Standard-Produktportfolio. Bereits heute bietet die SAP intelligente Anwendungen an, die beispielsweise die Entwicklung eines selbstgesteuerten Kundenservice zur Verbesserung der Kundenerfahrung ermöglichen, Finanzdienstleistungen automatisieren, indem sie eingehende Kontoauszüge offenen Forderungen zuordnen oder Marketing-Führungskräften helfen, den ROI ihrer Sponsoring-Aktivitäten zu maximieren.

Trend 3: Dialoggestützte Systeme

Aufgrund der enormen Fortschritte in der Verarbeitung natürlicher Sprache hat CAI die Art und Weise, wie wir mit Computern und elektronischen Geräten interagieren, grundlegend verändert. Bereits heute nutzen Millionen von Verbrauchern intelligente Schnittstellen für die Zufriedenstellung ihrer persönlichen Konsumentennachfrage. Solche Systeme spielen Musik ab, helfen bei der Urlaubsplanung, bestellen Pizza und vieles mehr. Wir stehen an der Schwelle zu einer Welt, in der dialoggestützte Assistenten jederzeit und überall verfügbar sind – auch im Büro und im Betrieb. Diese Funktionen vernetzen Daten, Prozesse, Anwendungen, Geräte und Menschen miteinander und bilden das Fundament für eine neue digitale Erfahrung am Arbeitsplatz. SAP CoPilot ist der digitale Assistent und Bot-Integrationshub der SAP für Unternehmen. Zusammen mit der SAP Leonardo Conversational AI Foundation bietet SAP CoPilot Services in natürlicher Sprache, die eine humanisierte Interaktion mit Geräten ermöglichen, und ist damit ein Baustein der Verwirklichung unserer Vision des intelligenten Unternehmens. Mit dieser Plattform werden Unternehmen in der Lage sein, Dialogfunktionen wie Chatbots und digitale Assistenten selbst zu entwickeln und zu verbessern.  

Markus Noga, Leiter Machine Learning bei SAP: “Einige der Technologien weisen im Unternehmenskontext enormes Innovationspotenzial auf.“

Was hält die Zukunft für uns bereit?

Technologien, die das menschliche Potenzial am Arbeitsplatz erweitern, sind keine Zukunftsmusik mehr. Doch wie entwickeln sie sich weiter, und welche Trends zeichnen sich für 2018 ab? Laut Markus Noga, dem Leiter des Bereichs Machine Learning bei der SAP, „stehen einige dieser Technologien kurz vor der Reife, weisen aber besonders im Unternehmenskontext immer noch enormes Innovationspotenzial auf.“ Nach Angaben von Gartner befinden sich 59 Prozent der Unternehmen immer noch in der Phase der Informationssammlung, die der Entwicklung einer AI-Strategie vorgelagert ist. Für das kommende Jahr bedeutet dies für diejenigen einen erheblichen Wettbewerbsvorteil, die bereits begonnen haben, AI in ihre Systeme einzubinden. „Ich bin überzeugt, dass 2018 immer mehr Unternehmen die Konzeptionsphase abschließen und wirklich anfangen werden, maschinelles Lernen anzuwenden“, meint Noga. „Ich erwarte außerdem, dass sich der Hype um Deep Learning im Zuge der allgemeinen Standardisierung allmählich legen wird, aber die Effizienz und Stabilität der zugrundeliegenden Modelle einen Erfolgsfaktor für Unternehmen darstellen wird.“

Nach Einschätzung von Gartner werden ein grundsolides Maschine-Learning-Fundament, intelligente Anwendungen und dialoggestützte Plattformen 2018 darüber entscheiden, ob Unternehmen im Rennen um die Digitalisierung zu den Gewinnern oder Verlierern gehören. Plattformen und Lösungen werden sich deutlich weiterentwickeln und immer komplexere Aufgaben erledigen können. Für die nächsten Jahre prognostiziert Gartner sogar, dass letztlich jede Anwendung künstliche Intelligenz enthalten wird, sodass eine intelligente Schnittstelle zwischen Mitarbeitern und Unternehmenssystemen entsteht.

Insgesamt werden sich Technologien noch mehr am Anwender orientieren und die Beziehungen zwischen Menschen, Organisationen und Dingen noch transparenter machen. Im Geschäfts- und Privatleben werden erweiterte und virtuelle Realität oder Gehirn-Computer-Schnittstellen tiefgreifende Erlebnisse schaffen, die weit über virtuelle Assistenten und Chatbots hinausgehen.

Als weitere Entwicklung zeichnet sich die Verschiebung von der Intelligenz einzelner Objekte zur künstlichen Intelligenz des Schwarms, „Schwarm-AI“ genannt, ab. Dieser Ansatz geht auf das Verhalten von Tieren zurück, die als Gruppe ihre Intelligenz erhöhen, um Probleme zu lösen oder Entscheidungen zu treffen. Schwarm-AI ist die Selbstorganisation von Systemen zu einem kollektiven, nicht zentral gesteuerten Verhalten. Diese Technologie bietet die Möglichkeit eines menschlichen Schwarms, in dem Informationen aus verschiedenen Gruppen zu einer einzigen Intelligenz zusammenfließen. Im Unternehmenskontext hilft Schwarm-AI, die Abläufe in Logistik, Transport- oder Personalwesen zu verbessern oder Kundenfeedback zu gewinnen, unter anderem indem der Einfluss von früheren Wertungen auf den Bewertenden ausgeschlossen wird. „All diese Entwicklungen auf dem Gebiet der künstlichen Intelligenz werden die Art und Weise, wie Unternehmen ihre Geschäfte in Zukunft ausüben werden, nicht nur im operativen Bereich beeinflussen. Ich gehe davon aus, dass neue, auf AI basierende Geschäftsmodelle aufkommen und Innovations- und Forschungskompetenz sich mehr und mehr von Hochschulen in Unternehmen verlagern werden“, erklärt Markus.

Von der Intelligenz einzelner Objekte zur Schwarm-AI

Die ehrgeizige Machine-Learning-Roadmap der SAP deutet eine rasante Entwicklung im kommenden Jahr an. Der Fokus auf der Verwirklichung des intelligenten Unternehmens durch intelligente Anwendungen und den Ausbau der SAP Leonardo Machine Learning Foundation bleibt auch 2018 weiter bestehen. Darüber hinaus wird die Einbindung von ML-Technologie in SAP-Standardprodukte wie SAP S/4HANA – für ein intelligentes Enterprise Resource Planning – fortgesetzt und die allgemeine Verfügbarkeit von dialoggestützten Services weiter ausgebaut. Nicht zuletzt könnten auch modernste Technologien wie auf Schwarmintelligenz basierende Funktionen und Systeme für immersive Erlebnisse immer wichtiger für Unternehmen werden.

Tags:

Leave a Reply