SAP France News

Qu’est-ce que l’analytique augmentée ?

Une collaboratrice qui utilise une solution analytique moderne (analytique augmentée)

Shot of a programmer connecting to a user interface while working in an office at night

La définition la plus simple de l’analytique augmentée ? C’est une analytique qui est « améliorée » par des technologies d’intelligence artificielle (IA), notamment par le machine learning et le traitement du langage naturel (NLP).

Le machine learning automatise les processus analytiques complexes, comme la préparation des données et la génération d’informations. Le traitement par le langage naturel permet à tout utilisateur, même non formé, de poser des questions sur ses données et d’obtenir des réponses de manière simple sous forme de phrases.

Le terme « Augmented Analytics » a été inventé par Gartner en 2017 et est désormais largement considéré comme l’avenir de la business intelligence (BI) et de l’analyse de données – y compris l’analyse prédictive.


Pourquoi l’analytique augmentée est-elle importante ?

Exploiter les possibilités offertes par le Big Data

Les données représentent la plus grande opportunité de l’économie moderne. Grâce à elles, les entreprises peuvent savoir quoi produire et quand, à qui s’adresser, comment évoluer, et bien plus encore. Mais le volume de données est aujourd’hui trop important pour que les collaborateurs puissent les interpréter seuls – ou sans parti pris – et l’exigence de réponses immédiates est tout simplement impossible à satisfaire. Des technologies comme l’IA et l’apprentissage automatique sont nécessaires pour découvrir des informations significatives dans un océan de Big Data. C’est l’une des raisons pour lesquelles les analyses augmentées sont si importantes : elles combinent la datascience et l’intelligence artificielle pour aider les entreprises à analyser des ensembles de données massifs en temps réel.

Réduire la dépendance à l’égard des data scientists

Le processus d’analyse est une série d’étapes manuelles et chronophages, si compliquées qu’en général seuls les data scientists peuvent les réaliser. Ces analystes professionnels doivent :

  1. Collecter des données à partir de sources multiples
  2. Les préparer pour l’analyse
  3. Effectuer l’analyse
  4. Trouver des insights utiles
  5. Visualiser les résultats
  6. Partager les résultats d’une manière convaincante
  7. Créer un plan d’action

Le problème, c’est qu’il y a une grande pénurie de data scientists dans le monde – et les embaucher coûte cher. Si l’analytique augmentée ne remplace pas ces professionnels, elle peut réduire votre dépendance à leur égard en automatisant des processus tels que la collecte, la préparation, le nettoyage et l’analyse des données.

En plus de libérer le temps des data scientists pour des tâches plus importantes, comme l’interprétation des résultats, l’analytique augmentée peut améliorer la valeur que ces analystes apportent à votre organisation. Les analyses optimisées par l’IA et l’apprentissage automatique les aident à établir des liens qu’ils auraient autrement manqués – et à trouver des informations pertinentes en moins de temps. Ces technologies peuvent également aider des collaborateurs qui occupent d’autres fonctions analytiques – des analystes commerciaux aux analystes métier – en améliorant leurs connaissances et en les aidant à faire le travail qui était auparavant réservé aux data scientists experts.

D’ici 2025, la rareté des data scientists ne sera plus un frein à l’adoption de la science des données et du machine learning dans les organisations.

Gartner, 2018

Démocratiser l’analytique pour les utilisateurs non formés

Une autre raison pour laquelle l’analytique augmentée est si importante est qu’elle permet aux « explorateurs de données » non formés d’entrer en jeu. En automatisant les processus analytiques complexes et en permettant aux utilisateurs d’interroger les données simplement en posant des questions, les collaborateurs qui n’ont pas de compétences en datascience peuvent quand même tirer parti des analyses avancées. L’apprentissage automatique peut guider ces explorateurs de données en leur proposant des questions/réponses pré remplies – et en leur suggérant où creuser davantage.

Avec l’analytique augmentée, les réponses aux requêtes se présentent sous la forme de visuels prêts à l’emploi, comme des diagrammes, des graphiques et des cartes, de sorte que les utilisateurs n’ont pas à les créer eux-mêmes. Ces visualisations peuvent être analysées à l’aide de commandes simples, rassemblées dans des récits de données et facilement partagées avec d’autres équipes et la direction.


L’évolution de l’analytique

L’Analytique et la Business Intelligence ont beaucoup évolué ces dernières années, passant d’outils sophistiqués destinés aux professionnels des données et de l’analyse à des outils optimisés par le machine learning que tout le monde peut utiliser.

1. Analytique traditionnelle

2. Analytique en libre-service

3. Analytique augmentée


Avantages de l’analytique augmentée

L’analytique augmentée offre de nombreux avantages similaires à ceux de la business intelligence, comme l’amélioration du reporting et de la prise de décision, mais elle offre également un niveau de rapidité et de précision impossible à atteindre sans intelligence artificielle et apprentissage automatique. Voici quelques avantages spécifiques à l’analytique augmentée :

Découvrez comment l’analytique augmentée fournit automatiquement des réponses aux requêtes, afin que les utilisateurs passent moins de temps à explorer les données et plus de temps à agir.

Hyoun Park, PDG et analyste principal chez Amalgam Insights, explique comment l’analytique augmentée fournit un contexte, afin que vous sachiez réellement ce que vos données contiennent.


Cas d’utilisation de l’analytique augmentée

L’analytique augmentée a le pouvoir de révolutionner les processus d’entreprise, mais à quoi cela ressemble-t-il dans le monde réel ? Voici quelques exemples de cas d’utilisation de l’analytique augmentée dans les domaines de la finance, des ventes et du marketing, de la production, des ressources humaines et du recouvrement.

L’analytique augmentée pour la finance
Un Analyste peut utiliser l’analytique augmentée pour prévoir et contrôler facilement les frais de voyage et de représentation (T&E) dans différents départements.

L’analytique augmentée pour le recouvrement
Les responsables du recouvrement peuvent utiliser l’apprentissage automatique dans l’analytique augmentée pour anticiper les retards de paiement, déterminer la bonne stratégie de recouvrement et maîtriser les flux de trésorerie.

L’analytique augmentée pour les ventes et le marketing
Les équipes de vente et de marketing disposent d’une meilleure connaissance des clients – et d’une identification rapide des opportunités de ventes croisées et incitatives – grâce à l’analytique augmentée.

L’analytique augmentée pour l’industrie manufacturière
Un analyste d’un fabricant d’acier peut utiliser l’analytique augmentée pour prévoir, surveiller et contrôler les dépenses dans différentes usines.

L’analytique augmentée pour les RH
Les responsables RH peuvent prédire le turn-over des collaborateurs, en comprendre les raisons et prendre des mesures correctives pour conserver les meilleurs éléments – tout cela grâce à l’analyse de l’IA.

 


Découvrez SAP Analytics Cloud

Exploitez la Business Intelligence, l’analytique augmentée et la planification pilotées par l’IA dans une solution unique et facile à utiliser.

En savoir plus


 

Quitter la version mobile